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CHAPTER 10

HILBERT SPECTRA OF NONLINEAR OCEAN WAVES

Paul A. Hwang, Norden E. Huang, David W. Wang and James M. Kaihatu

The Hilbert-Huang transform (HHT) analysis interprets wave nonlinearity in
terms of frequency modulation instead of harmonic generation. The resulting
spectrum contains much higher spectral energy at low frequency and sharper
drop off at high frequency in comparison with the spectra derived from Fourier-
based analysis methods. The high energy level in the low-frequency components
of the Hilbert spectrum seems to be consistent with the rich group structure
apparent in typical ocean-wave records. For wind-generated waves, the spectral
level of the Fourier spectrum is about two orders of magnitude smaller than that
of the Hilbert spectrum at the first subharmonic of the peak frequency. The mean
frequency of the Fourier spectrm is 20% higher than that of the Hilbert spectrum.
Furthermore, the frequency of the wave groups is also more likely to be properly
identified in the Hilbert spectrum than in the Fourier spectrum. The implications
for ocean engineering and air-sea interaction are discussed.

10.1. Introduction

Fourier-based spectral analysis methods have been widely used for studying random
waves. One major weakness of these methods is the assumption of linear superpo-
sition of wave components. As a result, the energy of a nonlinear wave spreads
into many harmonics, which are phase-coupled via the nonlinear dynamics inher-
ent in ocean waves. In addition to the nonlinearity issue, Fourier spectral analysis
should, strictly speaking, be used for periodic and stationary processes only, but
wave propagation inthe ocean is certainly neither stationary nor periodic.

Recently, Huang and his colleagues developed a new analysis technique, the
HHT. Through analytical examples, they demonstrated the superior frequency and
temporal resolutions of the HHT for analyzing nonstationary and nonlinear signals
(e.g., Huang et al. 1998, 1999). A brief description of the HHT analysis technique is
presented in section 10.2. Using this analysis, the physical interpretation of nonlin-
earity is frequency modulation, which is fundamentally different from the commonly
accepted concept associating nonlinearity with harmonic generation. Huang et al.
argued that harmonic generation is caused by the perturbation method used in solv-
ing the nonlinear equation governing the physical processes; thus, the harmonics are
produced by the mathematical tools used for the solution rather than being a true
physical phenomenon.

211
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In section 10.3, we investigate the HHT technique for ocean-wave analysis. The
spectrum of wind-generated waves is presented as a case study. The Hilbert spec-
trum is compared with that obtained by using the Fourier-based techniques [wavelet
and fast Fourier transform (FFT) algorithms]. The wavelet technique is based on
Fourier spectral analysis but with adjustable frequency-dependent window func-
tions, the mother wavelets, to provide temporal/spatial resolution for nonstationary
signals (e.g., Shen and Mei 1993; Shen et al. 1994; Liu 2000; Massel 2001). As ex-
pected, the Fourier-based analysis interprets wave nonlinearity in terms of harmonic
generation; thus, the spectral energy leaks into the higher-frequency components.
The HHT interprets wave nonlinearity as frequency modulation, and the spectral
energy remains near the base frequencies. As a result, these two sets of spectra have

significantly different spectral characteristics.
The implications of these differences for ocean-wave spectra for ocean engineer-

ing applications and air-sea interaction processes, such as the characteristic fre-
quency of the forcing waves and other statistical properties and the group structure
of a wave field, are discussed in section 10.4. A summary is given in section 10.5.

10.2. The Hilbert-Huang spectral analysis

The Hilbert transformation was first used for water-wave analysis in the 1980s (e.g.,I. !Melville 1983; Bitner-Gregersen and Gran 1983; Hwang et al. 1989). A main appli-
cation of the Hilbert analysis is to derive the local wavenumber in a spatial series or
the instantaneous frequency in a time series. To use the Hilbert transformation, the

proper preprocessing of the signal is critical. Large errors in the computed local fre-
quency or wavenumber can occur when small wavelets are riding on longer waves or
when a sharp change in the frequency occurs in the wave signal. A quantitative illus-
tration of the riding wave problem has been discussed in greater detail by Huang et !,
al. (1998) and sharp changes in the frequencies of oscillations by Guillaume (2002)
and will not be repeated here. The common approach in the past to alleviate such •
problems was to apply a low-pass filter to the signal prior to the Hilbert transforma-
tion. The determination of the low-pass frequency is somewhat subjective, and the
signals removed may contain the information of nonlinearity, which is frequently the
feature to be studied. Furthermore, a simple low-pass operation may not eliminate
the riding wave problem.

The key ingredient in the HHT is empirical mode decomposition (EMD) designed
to reposition the riding waves at the mean water level. Huang et al. (1998, 1999) have11 extensively discussed EMD. The main idea is to find the trend that can represent
the mean local average so that riding waves can be identified. The EMD method

ii.. uses the point-by-point average of the signal envelopes for the local mean. The
difference between the original signal and the local mean represents a mode of the
signal. The local mean may also contain riding waves, and the mode decomposition
process continues until no riding waves exist in the local mean signal. The process is i
called "sifting" by Huang et al. (1998). From experience, even for very complicated

11•
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Figure 10.1: (a) Simple sinusoidal oscillations with the frequency or wavenumber of the first half
double that of the second half, (b) the computed Hilbert spectrum, (c) the computed wavelet
spectrum, and (d) a comparison of the spatially or temporally averaged spectra computed by the
FFT, wavelet and HHT methods. The frequency (wavenumber) is normalized by the Nyquist value.

random signals, a time series can usually be decomposed into a relatively small
number of modes, M < log2(N), where M denotes the number of modes and N
is the number of data points. Each mode is free of riding waves; thus, the Hilbert
transformation yields the accurate local frequency of the mode. The spectrum of
the original signal can be obtained by the sum of the Hilbert spectra of all modes.
Extensive tests have been carried out by Huang et al. (1998, 1999). Here, we present
three cases to illustrate the superior resolutions of the Hilbert spectrum.

Case 1 is an example of the ideal sinusoidal oscillations of constant ampli-
tude. The frequency of the first half of the signal is twice that of the second half
(Fig. 10.1a). The spectra computed by the HI-T and wavelet techniques are dis-
played in Figs. 10.1b and 10.1c, respectively. The Hilbert spectrum yields very
precise frequency resolution and also high temporal resolution in identifying the
sudden change of signal frequency at about the half-point of the time series. In
comparison, the wavelet spectrum has only a mediocre temporal resolution of the
frequency change. A serious leakage problem also occurs and the spectral energy of
the simple oscillations spreads over a broad frequency range. Unless specified other-
wise, the spectral contours plotted in the figures presented in this chapter are 3-dB

(a factor of two) apart and cover a 30-dB range. For the example given in Fig. 10.1c,
the 3-dB contour near the spectral peak extends to between 0.8 and 1.2 times of
the spectral peak frequency for the wavelet spectrum. In contrast, the Hilbert spec-

tral energy is pretty much contained at the two spectral peak frequencies, and the
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Figure 10.2: Same as Fig. 10.1 but for a transient sinusoidal wave of one cycle.

spectral density of the next frequency bin is at least 10 dB down, as estimated by
averaging the marginal spectrum over the whole time sequence (Fig. 10.1d). The
"spectral peak discrimination power can be quantified by the ratio between the spec-
tral peaks and the neighboring spectral valleys. For the HHT, this number is 23 dB,
the FFT analysis gives 16 dB, and wavelet 8 dB. Also noticeable in Fig. 10.1d is
the unequal spectral densities at the two peaks of the wavelet spectrum, caused by
the application of frequency-dependent windows in the wavelet analysis. The spec-
tral density at the second-frequency component is only about 60 % of the spectral
density at the first-frequency component.

Case 2 is a single cycle sinusoidal oscillation occurring at the middle of the
otherwise quiescent signal stream (Fig. 10.2a). The period of a single cycle is 32
s. The precise temporal resolution of the HHT method is clearly demonstrated by
the sharp rise and fall of the Hilbert spectrum coincident with the transient signal,
as illustrated in Fig. 10.2b. By comparison, the wavelet spectrum is much more
smeared both in the frequency and temporal resolutions (Fig. 10.2c). The marginal
spectrum derived from the analysis shows a much sharper frequency definition of
the single oscillating cycle as compared to that of the wavelet and Fourier spectra
(Fig. 10.2d).

Case 3 is a sinusoidal function with periodically oscillating frequencies
(Fig. 10.3a)

y(t) = asin[wt + esin(wt)]. (10.1)

This equation is the exact solution for the nonlinear differential equation (Huang

"P_
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Figure 10.3: Same as Fig. 10.1 but for a signal -with modulated frequency, y(t) = a cos[wt +
e sin(wt)]. The unmodulated mean frequency is shown by the dotted lines in (b) and (c) for
reference.

et al. 1998)
d2---Y + [w + Ew cos(wt)]2 Y Vf- -y2wsiwt=01.)
dt2

±t [w±e oYt] /T~ 26W sin(wt) 0. (10.2).

If the perturbation method is used to solve (10.2), the solution to the first order of
f is

yi(t) = cos(wt) - esin2(wt) = cos(wt) - e {1 [1 - cos(2wt)] . (10.3)

The Hilbert spectrum (Fig. 10.3b) correctly reveals the nature of the oscillatory fre-
quencies of the exact solution (10.1). In contrast, the wavelet spectrum (Fig. 10.3c)
shows a dominant component at the base frequency and periodic oscillations of
the second-harmonic component. In the marginal spectrum (Fig. 10.3d), the HHT
analysis shows that the spectral energy is confined in the narrow frequency band
surrounding the base frequency, which reflects the nature of the frequency modu-
lation of the nonlinear system (10.2). Both FFT and wavelet analyses spread the
spectral energy into higher frequencies as a result of harmonic generation by the
Fourier decomposition of a nonlinear signal. The Fourier decomposition turns out to
be a perfect match for representing the perturbation solutions such as (10.3). In this
example, we have chosen e = so the spectral density of the second harmonic is
Sof the primary component, which is accurately reproduced by the Fourier spec-100

trum. The wavelet spectrum under-predicts the magnitude of the second harmonic
by about 40%, similar to the results in Case 1 (Fig. 10.1d).
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Figure 10.4: Examples of the time series of wind-generated waves used for spectral comparison.
The average wind speed is about 5 mn s. The data are measured by a fast response wire gauge
sampled at 50 Hz.

The three examples shown above illustrate the excellent temporal (spatial) and
frequency (wavenumber) resolution of the HHT method for processing nonlinear

and nonstationary signals. Many more demonstration cases are presented by Huang

et al. (1998, 1999).

10.3. Spectrum of wind-generated waves

Here, we investigate the impact on the wind wave spectral functions by using dif-
ferent the spectral analysis techniques described in section 10.2. The wave record is

acquired by using a fast-response wire gauge (Chapman and Monaldo 1991; HwangI :and Wang 2004) during a test deployment in a canal (approximately 100 m wide
and 400 m long). The data are sampled at 50 Hz, and the wind condition is light
and variable with a range between 0 and 5 m s-1. Figure 10.4 displays examples

of the wave record showing the typical quasi-random time series of wind waves rich

with group structure. The peak wave period is somewhat longer than 0.6 s, and one

expects considerably lower frequency energy associated with the wave groups. Most
groups have between 3 and 10 carrier waves.

Wave spectra are calculated by using the three methods using 20 segments of
the wave record. Each segment contains 640 data points (12.8 s). For the Fourier
spectrum, the mean of the 20 raw spectra is further running-averaged across nine
frequency bins, resulting in the final spectrum with 360 degrees of freedom. For

the Hilbert and wavelet spectra, each data segment produces a temporal variation

Ii!
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Figure 10.5: Spectra of wind-generated waves. The average wind speed is (a) 2 m s- 1 and
(b) 5 m s-1.

of the wave spectrum. The average over time gives the marginal (one-dimensional)
spectrum. The procedure is repeated for the 20 segments to obtain the final average
Hilbert and wavelet frequency spectra. Figure 10.5 compares the spectra derived
from these three different processing procedures. The similarities and differences of
the spectral properties are described below.

The peak frequencies of the three spectra are close to 1.9 Hz for average wind
speed U = 2 m s- 1 (Fig. 10.5a) and 1.4 Hz at U = 5 m s- 1 (Fig. 10.5b). A secondary
peak near the frequency component with minimum phase speed, fm.. = 13.6 Hz, is
very prominent in the Fourier spectrum. The secondary peak is still discernable in
the wavelet spectrum, but is buried in the noise of the Hilbert spectrum.

Overall, the wavelet spectrum represents a smoothed version of the Fourier spec-
trum. The two Fourier-based spectra produce essentially similar results. The differ-
ences between the two spectra can be attributed to the degree of freedom, which is

considerably higher in the wavelet analysis through the multiple windowing proce-
dure.

The Hilbert spectrum differs from the other two Fourier-based spectra in two
main areas. The spectral density at the low-frequency portion is considerably higher
in the Hilbert spectra, but near the peak and at higher frequencies, the reverse is
true. As we have emphasized in the last section, this result is expected because of
the HHT's and the Fourier-based methods' different intrepretations of wave non-
linearity. Fourier-based techniques always decompose a nonlinear wave into its base
frequency and higher harmonics; therefore, some spectral energy in the higher fre-

I. 4 A



218 P. A. Hwang, N. E. Huang, D. W. Wang and J. M. Kaihatu

12
K 10 'FHHT ! (a) 0.4 . FFT-HHT0i Wavleffr HT 1 1: 0 acetHT,oW,,la-lT :• •w'e~'hr (b)

L 0 .3 ......................... ... ..... . ....

r 0 '
...........-. ......... , .. ......... ........... ........... :;..........

10 . 0.2. ..... .

b - .1 . ........ ...... .................. ........
~i~0 A0 0

'•"10 ] . .. ... .. ... .. .. ... .. ... .. ... .. ... .. ....... 0.
00

~0
o73

S-0 ,3 0 .1 .......... ........... ........... .. .... ....
10- n0 0

00 0

-2L

0 1 2 3 4 5 0 1 2 3 4 5
f/f f/f

P P

Figure 10.6: (a) The ratios of wavelet and Fourier spectra normalized by the Hilbert spectrum.
(b) The difference spectra normalized by the Hilbert peak spectral density. The average wind speed
is 5 m s-1. Similar results are found for 2 m s-1 wind condition.

quencies is leaked from their lower frequency subharmonics. There are higher-order
spectral-processing methods, such as bispectrum and trispectrum, designed to re -
store the nonlinearity-contributed high-frequency spectral energy to the base fre-

quency. It is fair to say that Fourier-based methods always overestimate the spectral

level at frequencies higher than the spectral peak. The HHT interprets wave non-
linearity in terms of frequency modulation, and the spectral energy of a nonlinear

wave remains at the neighborhood of the base frequency (see also Fig. 10.3d).
Figure 10.6a shows the ratio of the spectral densities, SFISH and SwISH, where

subscripts F, H, and w denote the FFT, HHT, and wavelet, respectively. If we use

the Hilbert spectrum as a reference, the spectral density derived from Fourier-based
analysis is in general much lower (by a factor of about 80 at its minimal point) at
low frequencies and much higher (by about a factor of 10) at high frequencies.

We also processed the spectral difference normalized by the peak spectral density,
(SF - SH)/SH(fp) and (Sw - SH)/SH(fp). The results are shown in Fig. 10.6b.
Significant differences in the spectral properties are obvious in the frequency region
lower than the second harmonic of the peak frequency.

These differences in the frequency distribution of wave energy certainly impact
ocean engineering designs. For example, the mean frequency as defined by the nor-

malized first moment of the wave spectrum,

Jf, fS(f) df/f S(f) df , (10.4)
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is 13% lower in the Hilbert spectrum than that in the Fourier spectrum, and 21%
lower than that in the wavelet spectrum for the examples shown in Fig. 10.5. These
results clearly show that the Hilbert spectral level is considerably higher than the
Fourier-based spectra in the lower frequency region. In the higher frequency portion,
the Hilbert spectrum shows a steeper dropoff than the Fourier-based spectra. These
differences in the wave spectral properties affect many engineering applications such
as the frequency response of marine structures. Based on the interpretation of non-
linearity as frequency modulation, the mean frequency of the ocean-wave spectrum
is about 1.2 times lower than that given by Fourier analysis.

10.4. Statistical properties and group structure

As a result of the spectral downshift in the Hilbert spectrum in comparison with
the Fourier-based spectra as shown in Fig. 10.5, the characteristics of the spectral
bandwidth may differ when different processing methods are used. The investigation
of the spectral bandwidth is of some interest because it is closely related to the
statistical properties of ocean waves. The dimensionless frequency bandwidth of a
wave spectrum is defined (Longuet-Higgins 1952, 1980; Huang et al. 1983) by

2mor2f2 _ f _f2

f2 = (10.5)

where mi is the ith moment of the wave spectrum, and fi is the characteristic fre-
quency defined by the ith moment of the wave spectrum. As we commented earlier,
wave nonlinearity results in harmonic generation in Fourier-based processing; there-
fore, for a wind wave spectrum, f2 > fl is always true. With the Hilbert spectrum,
the nonlinearity is seen as a frequency modulation near the spectral peak. It is less
clear whether f2 > fl would hold true. We apply the HHT and wavelet analysis to
two wind wave data sets with nominal wind speeds of 2 and 5 m s-1. The results
are displayed in Figs. 10.7a and 10.7b. If we use either processing method, f2 > f,
for both cases, and the ratios of filf2 from both processing methods are quite
compatible. The calculated v2 from the two methods and their ratio are shown in
Figs. 10.7c and 10.7d, and also show good agreement. In Figs. 10.7c and 10.7d, the
bandwidth computed from the ensemble-averaged spectra from the FFT, wavelet
and HHT are also displayed. The results from the HHT and FFT are almost identi-
cal. This finding suggests that the study of the statistical properties of ocean waves
using wave spectral functions is probably not affected by using the Hilbert spectral
technique.

As displayed in Fig. 10.4, ocean waves in nature almost always exhibit a group
structure, strongly suggesting the presence of energy in the low-frequency com-
ponents. The Hilbert transform has been widely used in the investigation of the
envelope and group structure of surface waves (Melville 1983; Bitner-Gregersen and
Gran 1983; Hwang et al. 1989; Veltchva 2002; Veltchva et al. 2003).
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Figure 10.7: (a) Comparison of the characteristic frequencies f2 and fi derived from the HHT '

and wavelet analyses, (b) ratio f1/f2 plotted as a function of f2, (c) dimensionless bandwidth v2

derived from the HHT and wavelet analyses, (d) ratio Vwavelet/ VHT plotted as a function of fp,
where fp is the spectral peak frequency.

The low-frequency energy can be produced, for example, by the interaction of
two wave components with a small frequency difference (frequency beating). When 'i

FFT-based techniques are used, such low-frequency energy cannot be easily de-
tected. As an illustrative example, let us examine the following simple case of am-
plitude modulation (AM) of carrier waves with an angular frequency of w0,

y cos(w t) cos(wot) =cos ( wo+ ')t + cos[(wo - -•-)t] . (10.6)

Because of the mathematical equivalence of the two expressions in the right side
of (10.6), Fourier decomposition interprets the signal as two sinusoidal oscillations
of equal amplitude with frequencies at wo + 6w/2 and wo - Jw/2. The HHT, with
its mode decomposition nature, will identify the low-frequency component. Figure

Ii 10.8a shows the AM time series with a normalized (by the Nyquist value) carried
wave frequency of 0.4 and a modulation frequency one tenth of the carrier fre-
quency. The spectra produced by three difference analysis techniques are shown
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Figure 10.8: (a) Time/space series of an amplitude modulation signal showing the group struc-
ture. (b) The temporal/spatial Hilbert spectrum, (c) the temporal/spatial wavelet spectrum, and
(d) the average Hilbert, wavelet, and Fourier spectra. The carrier period is 5At, and the modulation
period is 50At, where At is the sampling time interval.

in Fig. 10.8d. The FFT processing produces two spectral components at 0.36 and

0.44. The small frequency difference is usually difficult for the wavelet processing to

distinguish because of the relatively short dynamic windows used. In comparison,
the HHT is able to identify both the carrier and the modulation frequency com-

ponents at the correct frequencies of 0.4 and 0.04. The Hilbert spectrum, however,

also contains energy at subharmonic and superharmonic frequencies, although the
energy levels are relatively small: about -20 dB or smaller in comparison with the
peak energy level. These sub- and super-harmonic components occur at the nodal
points of the time series (Fig. 10.8b) and suggest that they are the results of a low

signal-to-noise ratio.
The ability of the HHT to identify the modulation (group) frequency, as men-

tioned earlier, is attributed to the nature of mode decomposition. Figure 10.9 plots
the time series of the original signal and the decomposed empirical modes. The mod-

# ulation frequency component shows up in mode 4 for the present example. From
our experience, artificial subharmonics usually occur in the presence of groupiness
in the signal. The problem of artificial subharmonic components is especially serious
when the group structure is weak. For example, Fig. 10.10 plots a case in which
the modulation frequency is 5 times lower than the carrier frequency. The spectral
densities at the frequency components between the carrier and modulation frequen-
cies are comparable to that at the modulation frequency (Fig. 10.10d). Based on

our experience, it is not unusual that the modulation frequency component disap-
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Figure 10.9: EMD processing of the signal shown in Fig. 10.8(a). The top panel is the original :
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0.Summary

Analyzing nonlinear and nonstationary signals remains a very challenging task. ':••
::•:!ii Presently, most methods developed to deal with nonstationarity are based on the ?

cnetof Fourier decomposition; therefore, all the shortcomings associated with ,L!
Fuirtransformation are inherent in those methods also. The recent introduction i!

!;; of empirical mode decomposition by H-uang et al. (1998, 1999) represents a fulnda-

Jmentally different approach for decomposing nonlinear and nonstationary signals.
associated spectral analysis (HHT) provides superior spatial (temporal) and

ii;::wavenumber (frequency) resolution for handling nonstationarity and nonlinearity

i:!;:i,(secion10.2). The Hilbert spectrum also results in a considerably different inter-Fpretation of nonlinearity (frequency modulation). Applying the technique to theii

i~ii~i;!! problems of wind-generated ocean waves, we found that the spectral function de- ;•
s rived from the HHT is markedly different from those obtained by using the Fourier-
based techniques. The difference in the resulting spectral functions is attributed to
the interpretation of nonlinearity. The Fourier techniques decompose a nonlinear

signal into sinusoidal harmonics; therefore, some of the spectral energy at the base

frequency is distributed to the higher-frequency components. The IHT interprets
nonlinearity in terms of frequency modulation, and the spectral energy remains in

the neighborhood of the base frequency. This difference results in a considerably dfe ir

ti:

I! ' /','r,
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Figure 10.10: Same as Fig. 10.8, but the carrier period is 5At, and the modulation period is
25At, where At is the sampling time interval.

higher spectral energy at lower frequencies and sharper dropoff at higher frequen-

cies in the Hilbert spectrum in comparison with the Fourier-based spectra. The

mean frequency computed from the Hilbert spectrum is 13 to 21% lower than those

derived from Fourier-based spectra. On the other hand, for the basic statistical

measures such as the spectral bandwidth or spectral moments, the results com-
puted from the Hilbert and Fourier spectra are similar, suggesting that the study

of the statistical properties of ocean waves is probably not affected by using the

Hilbert spectral technique. Finally, wave group structures in the time series of sur-

face displacement represent low-frequency oscillations. When processing the results

from Fourier analysis, however, one may interpret the wave group as the interaction
of two wave components with a slight difference in their frequencies, and the spec-

tral energy does not appear at the observed frequency of wave groups. The Hilbert

analysis places the spectral energy of the wave group at the correct frequency band

if it is distinct enough from the carrier frequency.
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